Conférences plénières
Les titres et les résumés des présentations sont dans la langue dans laquelle la conférence sera donnée.

Dre Andrea Gloria-Soria
Associate Agricultural Scientist
Connecticut Agricultural Experiment Station
Biographie : La Dre Gloria-Soria s’est jointe à la Station agricole du Connecticut en janvier 2018. Elle est titulaire d’un baccalauréat en biologie de l’Université nationale autonome du Mexique (UNAM) et d’un doctorat en biologie moléculaire et cellulaire de l’Université de Houston, au Texas. Elle a été boursière postdoctorale Gaylord Donnelley en environnement à Yale de 2009 à 2011 avec le Dr Leo Buss et le Dr Stephen Dellaporta, puis a poursuivi ses travaux postdoctoraux avec le Dr Jeffrey Powell à l’Université de Yale. La Dre Gloria-Soria possède une expertise en génétique des populations, en biologie moléculaire, en génétique évolutive, en biologie des vecteurs et en évolution expérimentale. Elle étudie les modèles de diversité génétique chez les vecteurs de maladies afin de comprendre leur distribution historique et moderne, ainsi que les implications de la variation génétique sur la transmission des maladies. Ses travaux, qui portaient initialement sur le moustique vecteur de la fièvre jaune Aedes aegypti, s’étendent désormais au moustique domestique nord-américain Culex pipiens, au moustique tigre Aedes albopictus et au moustique des bois Aedes triseriatus.
Titre : Using population genomics to reconstruct Aedes aegypti evolutionary history
Abstract: Aedes aegypti is the primary vector of the most important arboviruses causing human diseases: dengue, chikungunya, Zika and urban yellow fever. The species originated in the islands of the Southwest Indian Ocean, before colonizing Africa <85,000 years ago and spreading to the global tropics and subtropics in the last half century. Its expansion to temperate latitudes continues today aided by human-mediated transport of adults, larvae, or eggs and climate change. Range expansion, combined with Ae. aegypti adaptability to thrive in human environments, dramatically increases the percentage of global population at risk for diseases it transmits. I will talk about the current distribution of Ae. aegypti, recent invasions, discuss the use of population genomics to investigate the evolutionary history of the species and how human activity has shaped the distribution of these species throughout the years, and how this information can contribute to vector control.
Dr Heath MacMillan
Associate Professor
Department of Biology and Institute of Biochemistry at Carleton University
I’m an Associate Professor in the Department of Biology and Institute of Biochemistry at Carleton University. I took an early interest in animal physiology, which led to an honours thesis with Brent Sinclair (Hewitt Award, 2012) at Western before I was sure I had any particular interest in entomology. I was sold. I stayed at Western for an MSc which quickly turned into a PhD with Brent and Jim Staples as a co-supervisor. Following my PhD, I spent two years as a postdoctoral fellow with Johannes Overgaard at Aarhus University in Denmark, and another two as a Banting PDF with Andrew Donini at York University. During my training my thinking was moulded by these talented mentors and many other talented integrative physiologists. Today, the MacMillan lab at Carleton is full of talented students and postdocs who share the values and kind spirit of the entomological community in Canada that is well-represented at ESC meetings. Throughout my career, I have worked to build a clear understanding of the biochemical and physiological mechanisms governing performance and stress-induced injury in insects, with a particular focus on temperature. Lately, we have been working with academic, government, and industry partners to build conceptual models of how abiotic and biotic stressors (e.g. temperature, diet, crowding and plastics) constrain the ability of insects to survive, remain active, grow, and reproduce. Our current work involves a variety of model insects, including field crickets, wood-boring beetles, fruit flies, and mosquitoes.

Titre : New woes rising: How chronic stressors progressively challenge insect physiology
Abstract: The world is a stressful place. Stressors act on biotic systems at the molecular and biochemical levels. In multicellular animals, like insects, these subcellular impacts manifest problems that cascade through cellular, tissue, organ, and organ systems to ultimately challenge fitness. How and why insects experience or avoid these effects is important for forecasting change in the natural world, for predicting and controlling their negative impacts on human endeavours, and for leveraging their enormous positive potential. In this talk, I will outline our integrative approach to understanding how conceptually simple challenges (e.g. it is too cold, or there is not enough protein) impact multiple levels of biological organization, and how insects have evolved to tolerate or circumvent such woes. We will start with how low temperatures disrupt ion and water balance in cold-intolerant species, driving a systemic loss of homeostasis, injury, and death. We will then touch on how some very cold tolerant species of interest, like the mountain pine beetle, or Asian tiger mosquito have evolved to physiologically avoid these pesky issues in cold winters and survive the cold. Lastly, we will explore how we can use integrative stress physiology as one way to improve insect mass rearing, with a focus on how we can make cricket rearing for food and feed more productive and sustainable.

Dr L. Philip Lounibos
University of Florida
Florida Medical Entomology Laboratory
Biographie : Californien de sixième génération, Phil Lounibos a grandi dans une ferme avicole à Petaluma. Il a étudié à l’Université de Notre Dame, où il s’est initié à la recherche sur les moustiques dans le laboratoire du regretté George Craig. Après un doctorat en biologie à l’Université Harvard, en tant que chercheur postdoctoral à l’Unité de biologie des moustiques du Centre international de physiologie et d’écologie des insectes, il a supervisé les premiers essais de contrôle génétique d’Aedes aegypti sur la côte kenyane et mené des recherches indépendantes sur d’autres moustiques qui se reproduisent dans des contenants et réservoirs artificiels en Afrique de l’Est. De 1977 à 2017, au Laboratoire d’entomologie médicale de Floride, il a mené des études écologiques, comportementales et physiologiques sur une large gamme d’espèces de moustiques en Floride et en Amérique du Sud. L’écologie des espèces de moustiques envahissantes, en particulier Ae. aegypti et Aedes albopictus, ainsi que les mécanismes de déplacement et de ségrégation ont été les thèmes principaux de ses deux dernières décennies de recherche au FMEL, financées par le NIH. M. Lounibos a encadré de nombreux membres de la communauté étudiante des cycles supérieurs et postdocs en tant que membre du corps professoral de l’Université de Floride.
Titre : Invasive species and mosquito-borne disease
Abstract: Having hitchhiked with human travellers for millenia, invasive mosquito species were transported intercontinentally on sailing vessels during the 15-19th centuries and on container ships beginning with the 20th century. Outbreaks of mosquito-borne diseases, including yellow fever, malaria (human and avian), filariasis, dengue, chikungunya, West Nile fever, and Zika have been attributed to and amplified by invasive vector species. Drought-resistant eggs and domesticity both favor invasiveness in mosquitoes, and pre-adaptations in their native ranges, such as preferences for disturbed, ecotonal habitats, may have facilitated the invasive successes of Aedes aegypti (L.) and Aedes albopictus Skuse. Independent invasions by Ae. albopictus in 1985 led to competitive exclusions of Ae. aegypti in southeastern USA but not in Brazil. Experiments identified asymmetric reproductive interference (=satyrization) as causing the rapid displacements of Ae. aegypti in the USA but not in Brazil, where male Ae. albopictus are ineffective satyrs. In 2012 the Indian vector Anopheles stephensi Liston was recognized as the major transmitter during a malaria outbreak in arid Djibouti. Now widespread in Africa, invasive An. stephensi occupies a more urbanized niche than native vector species and, hence, represents a new obstacle to malaria control on that continent. In southern Florida, the Burmese python has decreased mammalian diversity in areas of the Everglades where this invasive reptile is common. Everglades virus, which circulates through murid rodent hosts, is now 10X more prevalent in Culex cedecei Stone and Hair in areas where this snake is common because mosquito vectors have few alternative mammals to feed upon.
Dre Janet Sperling
President, Canadian Lyme Disease Foundation
Biographie : L’intérêt de la Dre Sperling pour l’entomologie a commencé pendant son baccalauréat en horticulture, et elle a ensuite obtenu une maîtrise en physiologie sensorielle et en comportement alimentaire des doryphores de la pomme de terre. Plus tard, alors qu’elle élevait sa famille, elle a découvert la dimension humaine de la maladie de Lyme et s’est rendu compte du manque de connaissances sur le sujet. Janet a commencé à explorer comment la défense des droits des patientes et des patients peut influencer les politiques de santé, ce qui a finalement mené au projet de loi d’initiative parlementaire C-442, parrainé par la députée Elizabeth May. Reconnaissant l’importance de la prise de décision fondée sur des preuves, 30 ans après avoir découvert la maladie de Lyme dans un contexte universitaire, Janet a utilisé le séquençage à haut débit de l’ADN pour terminer un doctorat sur le microbiome bactérien présent dans les tiques. Depuis lors, elle a mis en pratique ce qu’elle a appris en laboratoire pour tenter de combler le fossé entre les politiques publiques pertinentes et les priorités des patientes et patients, ce qui est désormais l’objectif principal de Janet en tant que présidente de la Fondation canadienne de la maladie de Lyme.

Titre : Lyme, CanLyme and entomologists in action
Abstract: Entomologists can find themselves in a contentious environment when biological, political and social factors conflict. One example is the complex challenge of Lyme disease diagnosis and treatment. The current paradigm of Lyme disease covers multiple different Borrelia pathogen strains, tick vector species, vertebrate host species, co-infections and limits to detection. Diverging perspectives are provided by ecology, molecular biology, public health and politics, with debate particularly revolving around chronic Lyme infection. Improved technologies such as high-throughput sequencing have bridged knowledge gaps but there is less understanding of the limitations of these technologies. However, determination to push boundaries drives progress, and the Canadian Lyme Disease Foundation (CanLyme) remains committed to such progress by supporting increased understanding of tick biology, including the role of tick endosymbionts, tracking tick population spread, exposure to novel hosts, and constraints on transmission. The history of insecticide resistance provides perspective for a parallel discussion on the overuse and misuse of antibiotics. The history of Lyme patient advocacy is also instructive, particularly in distinguishing evidence from assumptions, and understanding the human costs of delaying investigation into co-infections and novel treatments. As we work toward improved public dialogue on adaptable evidence-based treatment protocols, entomologists have remained integral to translating science into action.